Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10215, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702403

RESUMO

Weeds pose a major constraint in lentil cultivation, leading to decrease farmers' revenues by reducing the yield and increasing the management costs. The development of herbicide tolerant cultivars is essential to increase lentil yield. Even though herbicide tolerant lines have been identified in lentils, breeding efforts are still limited and lack proper validation. Marker assisted selection (MAS) can increase selection accuracy at early generations. Total 292 lentil accessions were evaluated under different dosages of two herbicides, metribuzin and imazethapyr, during two seasons at Marchouch, Morocco and Terbol, Lebanon. Highly significant differences among accessions were observed for days to flowering (DF) and maturity (DM), plant height (PH), biological yield (BY), seed yield (SY), number of pods per plant (NP), as well as the reduction indices (RI) for PH, BY, SY and NP. A total of 10,271 SNPs markers uniformly distributed along the lentil genome were assayed using Multispecies Pulse SNP chip developed at Agriculture Victoria, Melbourne. Meta-GWAS analysis was used to detect marker-trait associations, which detected 125 SNPs markers associated with different traits and clustered in 85 unique quantitative trait loci. These findings provide valuable insights for initiating MAS programs aiming to enhance herbicide tolerance in lentil crop.


Assuntos
Resistência a Herbicidas , Herbicidas , Lens (Planta) , Polimorfismo de Nucleotídeo Único , Lens (Planta)/genética , Lens (Planta)/efeitos dos fármacos , Lens (Planta)/crescimento & desenvolvimento , Herbicidas/farmacologia , Herbicidas/toxicidade , Resistência a Herbicidas/genética , Estudo de Associação Genômica Ampla , Genes de Plantas , Locos de Características Quantitativas
2.
Front Plant Sci ; 15: 1260690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525151

RESUMO

Chickpea, renowned for its exceptional nutritional value, stands as a crucial crop, serving as a dietary staple in various parts of the world. However, its productivity faces a significant challenge in the form of drought stress. This challenge highlights the urgent need to find genetic markers linked to drought tolerance for effective breeding programs. The primary objective of this study is to identify genetic markers associated with drought tolerance to facilitate effective breeding programs. To address this, we cultivated 185 chickpea accessions in two distinct locations in Lebanon over a two-year period, subjecting them to both irrigated and rain-fed environments. We assessed 11 drought-linked traits, including morphology, growth, yield, and tolerance score. SNP genotyping revealed 1344 variable SNP markers distributed across the chickpea genome. Genetic diversity across populations originating from diverse geographic locations was unveiled by the PCA, clustering, and structure analysis indicating that these genotypes have descend from five or four distinct ancestors. A genome-wide association study (GWAS) revealed several marker trait associations (MTAs) associated with the traits evaluated. Within the rainfed conditions, 11 significant markers were identified, each associated with distinct chickpea traits. Another set of 11 markers exhibited associations in both rainfed and irrigated environments, reflecting shared genetic determinants across these conditions for the same trait. The analysis of linkage disequilibrium (LD) highlighted two genomic regions with notably strong LD, suggesting significant interconnections among several investigated traits. This was further investigated by the correlation between major markers associated with these traits. Gene annotation of the identified markers has unveiled insights into 28 potential genes that play a role in influencing various chickpea drought-linked traits. These traits encompass crucial aspects such as blooming organ development, plant growth, seed weight, starch metabolism, drought regulation, and height index. Among the identified genes are CPN60-2, hsp70, GDSL(GELP), AHL16, NAT3, FAB1B, bZIP, and GL21. These genes collectively contribute to the multifaceted response of chickpea plants to drought stress. Our identified genetic factors exert their influence in both irrigated and rainfed environments, emphasizing their importance in shaping chickpea characteristics.

3.
Front Genet ; 14: 1187597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408775

RESUMO

Grass pea is a promising crop with the potential to provide food and fodder, but its genomics has not been adequately explored. Identifying genes for desirable traits, such as drought tolerance and disease resistance, is critical for improving the plant. Grass pea currently lacks known R-genes, including the nucleotide-binding site-leucine-rich repeat (NBS-LRR) gene family, which plays a key role in protecting the plant from biotic and abiotic stresses. In our study, we used the recently published grass pea genome and available transcriptomic data to identify 274 NBS-LRR genes. The evolutionary relationships between the classified genes on the reported plants and LsNBS revealed that 124 genes have TNL domains, while 150 genes have CNL domains. All genes contained exons, ranging from 1 to 7. Ten conserved motifs with lengths ranging from 16 to 30 amino acids were identified. We found TIR-domain-containing genes in 132 LsNBSs, with 63 TIR-1 and 69 TIR-2, and RX-CCLike in 84 LsNBSs. We also identified several popular motifs, including P-loop, Uup, kinase-GTPase, ABC, ChvD, CDC6, Rnase_H, Smc, CDC48, and SpoVK. According to the gene enrichment analysis, the identified genes undergo several biological processes such as plant defense, innate immunity, hydrolase activity, and DNA binding. In the upstream regions, 103 transcription factors were identified that govern the transcription of nearby genes affecting the plant excretion of salicylic acid, methyl jasmonate, ethylene, and abscisic acid. According to RNA-Seq expression analysis, 85% of the encoded genes have high expression levels. Nine LsNBS genes were selected for qPCR under salt stress conditions. The majority of the genes showed upregulation at 50 and 200 µM NaCl. However, LsNBS-D18, LsNBS-D204, and LsNBS-D180 showed reduced or drastic downregulation compared to their respective expression levels, providing further insights into the potential functions of LsNBSs under salt stress conditions. They provide valuable insights into the potential functions of LsNBSs under salt stress conditions. Our findings also shed light on the evolution and classification of NBS-LRR genes in legumes, highlighting the potential of grass pea. Further research could focus on the functional analysis of these genes, and their potential use in breeding programs to improve the salinity, drought, and disease resistance of this important crop.

4.
Front Plant Sci ; 14: 1159016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346141

RESUMO

Low-temperature stress (LTS) is among the major abiotic stresses affecting the geographical distribution and productivity of the most important crops. Understanding the genetic basis of photosynthetic variation under cold stress is necessary for developing more climate-resilient barley cultivars. To that end, we investigated the ability of chlorophyll fluorescence parameters (FVFM, and FVF0) to respond to changes in the maximum quantum yield of Photosystem II photochemistry as an indicator of photosynthetic energy. A panel of 96 barley spring cultivars from different breeding zones of Canada was evaluated for chlorophyll fluorescence-related traits under cold acclimation and freeze shock stresses at different times. Genome-wide association studies (GWAS) were performed using a mixed linear model (MLM). We identified three major and putative genomic regions harboring 52 significant quantitative trait nucleotides (QTNs) on chromosomes 1H, 3H, and 6H for low-temperature tolerance. Functional annotation indicated several QTNs were either within the known or close to genes that play important roles in the photosynthetic metabolites such as abscisic acid (ABA) signaling, hydrolase activity, protein kinase, and transduction of environmental signal transduction at the posttranslational modification levels. These outcomes revealed that barley plants modified their gene expression profile in response to decreasing temperatures resulting in physiological and biochemical modifications. Cold tolerance could influence a long-term adaption of barley in many parts of the world. Since the degree and frequency of LTS vary considerably among production sites. Hence, these results could shed light on potential approaches for improving barley productivity under low-temperature stress.

5.
Front Genet ; 14: 1085024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144131

RESUMO

Genomics and genome editing promise enormous opportunities for crop improvement and elementary research. Precise modification in the specific targeted location of a genome has profited over the unplanned insertional events which are generally accomplished employing unadventurous means of genetic modifications. The advent of new genome editing procedures viz; zinc finger nucleases (ZFNs), homing endonucleases, transcription activator like effector nucleases (TALENs), Base Editors (BEs), and Primer Editors (PEs) enable molecular scientists to modulate gene expressions or create novel genes with high precision and efficiency. However, all these techniques are exorbitant and tedious since their prerequisites are difficult processes that necessitate protein engineering. Contrary to first generation genome modifying methods, CRISPR/Cas9 is simple to construct, and clones can hypothetically target several locations in the genome with different guide RNAs. Following the model of the application in crop with the help of the CRISPR/Cas9 module, various customized Cas9 cassettes have been cast off to advance mark discrimination and diminish random cuts. The present study discusses the progression in genome editing apparatuses, and their applications in chickpea crop development, scientific limitations, and future perspectives for biofortifying cytokinin dehydrogenase, nitrate reductase, superoxide dismutase to induce drought resistance, heat tolerance and higher yield in chickpea to encounter global climate change, hunger and nutritional threats.

6.
Front Genet ; 14: 1128992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021003

RESUMO

Background: The basic helix-loop-helix (bHLH) transcription factor is a vital component in plant biology, with a significant impact on various aspects of plant growth, cell development, and physiological processes. Grass pea is a vital agricultural crop that plays a crucial role in food security. However, the lack of genomic information presents a major challenge to its improvement and development. This highlights the urgency for deeper investigation into the function of bHLH genes in grass pea to improve our understanding of this important crop. Results: The identification of bHLH genes in grass pea was performed on a genome-wide scale using genomic and transcriptomic screening. A total of 122 genes were identified as having conserved bHLH domains and were functionally and fully annotated. The LsbHLH proteins could be classified into 18 subfamilies. There were variations in intron-exon distribution, with some genes lacking introns. The cis-element and gene enrichment analyses showed that the LsbHLHs were involved in various plant functions, including response to phytohormones, flower and fruit development, and anthocyanin synthesis. A total of 28 LsbHLHs were found to have cis-elements associated with light response and endosperm expression biosynthesis. Ten conserved motifs were identified across the LsbHLH proteins. The protein-protein interaction analysis showed that all LsbHLH proteins interacted with each other, and nine of them displayed high levels of interaction. RNA-seq analysis of four Sequence Read Archive (SRA) experiments showed high expression levels of LsbHLHs across a range of environmental conditions. Seven highly expressed genes were selected for qPCR validation, and their expression patterns in response to salt stress showed that LsbHLHD4, LsbHLHD5, LsbHLHR6, LsbHLHD8, LsbHLHR14, LsbHLHR68, and LsbHLHR86 were all expressed in response to salt stress. Conclusion: The study provides an overview of the bHLH family in the grass pea genome and sheds light on the molecular mechanisms underlying the growth and evolution of this crop. The report covers the diversity in gene structure, expression patterns, and potential roles in regulating plant growth and response to environmental stress factors in grass pea. The identified candidate LsbHLHs could be utilized as a tool to enhance the resilience and adaptation of grass pea to environmental stress.

7.
Front Plant Sci ; 14: 1039211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993855

RESUMO

Pomegranate has a unique evolutionary history given that different cultivars have eight or nine bivalent chromosomes with possible crossability between the two classes. Therefore, it is important to study chromosome evolution in pomegranate to understand the dynamics of its population. Here, we de novo assembled the Azerbaijani cultivar "Azerbaijan guloyshasi" (AG2017; 2n = 16) and re-sequenced six cultivars to track the evolution of pomegranate and to compare it with previously published de novo assembled and re-sequenced cultivars. High synteny was observed between AG2017, Bhagawa (2n = 16), Tunisia (2n = 16), and Dabenzi (2n = 18), but these four cultivars diverged from the cultivar Taishanhong (2n = 18) with several rearrangements indicating the presence of two major chromosome evolution events. Major presence/absence variations were not observed as >99% of the five genomes aligned across the cultivars, while >99% of the pan-genic content was represented by Tunisia and Taishanhong only. We also revisited the divergence between soft- and hard-seeded cultivars with less structured population genomic data, compared to previous studies, to refine the selected genomic regions and detect global migration routes for pomegranate. We reported a unique admixture between soft- and hard-seeded cultivars that can be exploited to improve the diversity, quality, and adaptability of local pomegranate varieties around the world. Our study adds body knowledge to understanding the evolution of the pomegranate genome and its implications for the population structure of global pomegranate diversity, as well as planning breeding programs aiming to develop improved cultivars.

8.
Front Genet ; 14: 1292009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327700

RESUMO

Introduction: Chickpea is a legume crop that thrives in regions with semi-arid or temperate climates. Its seeds are an excellent source of proteins, carbohydrates, and minerals, especially high-quality proteins. Chickpea cultivation faces several challenges including Fusarium wilt (FW), a major fungal disease that significantly reduces productivity. Methods: In this study, a Genome-wide Association Analysis (GWAS) was conducted to identify multiple genomic loci associated with FW resistance in chickpea. We conducted a comprehensive evaluation of 180 chickpea genotypes for FW resistance across three distinct locations (Ethiopia, Tunisia, and Lebanon) during the 2-year span from 2015 to 2016. Disease infection measurements were recorded, and the wilt incidence of each genotype was calculated. We employed a set of 11,979 single nucleotide polymorphisms (SNPs) markers distributed across the entire chickpea genome for SNP genotyping. Population structure analysis was conducted to determine the genetic structure of the genotypes. Results and Discussion: The population structure unveiled that the analyzed chickpea germplasm could be categorized into four sub-populations. Notably, these sub-populations displayed diverse geographic origins. The GWAS identified 11 SNPs associated with FW resistance, dispersed across the genome. Certain SNPs were consistent across trials, while others were specific to particular environments. Chromosome CA2 harbored five SNP markers, CA5 featured two, and CA4, CA6, CA7, and CA8 each had one representative marker. Four SNPs demonstrated an association with FW resistance, consistently observed across a minimum of three distinct environments. These SNPs included SNP5826041, SNP5825086, SNP11063413, SNP5825195, which located in CaFeSOD, CaS13like, CaNTAQ1, and CaAARS genes, respectively. Further investigations were conducted to gain insights into the functions of these genes and their role in FW resistance. This progress holds promise for reducing the negative impact of the disease on chickpea production.

9.
Front Genet ; 13: 898522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263427

RESUMO

Heat stress caused by climatic changes is one of the most significant stresses on livestock in hot and dry areas. It has particularly adverse effects on the ability of the breed to maintain homeothermy. Developing countries are advised to protect and prepare their animal resources in the face of potential threats such as climate change. The current study was conducted in Egypt's three hot and dry agro-ecological zones. Three local sheep breeds (Saidi, Wahati, and Barki) were studied with a total of 206 ewes. The animals were exercised under natural heat stress. The heat tolerance index of the animals was calculated to identify animals with high and low heat tolerance based on their response to meteorological and physiological parameters. Genomic variation in these breeds was assessed using 64,756 single nucleotide polymorphic markers (SNPs). From the perspective of comparative adaptability to harsh conditions, our objective was to investigate the genomic structure that might control the adaptability of local sheep breeds to environmental stress under hot and dry conditions. In addition, indices of population structure and diversity of local breeds were examined. Measures of genetic diversity showed a significant influence of breed and location on populations. The standardized index of association (rbarD) ranged from 0.0012 (Dakhla) to 0.026 (Assuit), while for the breed, they ranged from 0.004 (Wahati) to 0.0103 (Saidi). The index of association analysis (Ia) ranged from 1.42 (Dakhla) to 35.88 (Assuit) by location and from 6.58 (Wahati) to 15.36 (Saidi) by breed. The most significant SNPs associated with heat tolerance were found in the MYO5A, PRKG1, GSTCD, and RTN1 genes (p ≤ 0.0001). MYO5A produces a protein widely distributed in the melanin-producing neural crest of the skin. Genetic association between genetic and phenotypic variations showed that OAR1_18300122.1, located in ST3GAL3, had the greatest positive effect on heat tolerance. Genome-wide association analysis identified SNPs associated with heat tolerance in the PLCB1, STEAP3, KSR2, UNC13C, PEBP4, and GPAT2 genes.

10.
PLoS One ; 17(10): e0276732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301853

RESUMO

Environmental stresses, particularly drought, limit symbiotic nitrogen fixation in legumes, resulting in decreased yielding capacity. Drought is one of the most important constraints limiting yield potential in crops and it is the major abiotic stress that can cause more than 70% yield loss in chickpea. In this study, a total of two hundred four chickpea (Cicer arietinum L.) genotypes were selected to study the interaction between drought stress and nodule formation. This interaction was assessed by using morphological, yield and yield components. The field experiments were laid out in two locations (Terbol and Kfardan stations, Bekaa valley, Lebanon) using Alpha lattice design with two replications and two watering treatments (irrigation and rainfed) during 2016 and 2017 seasons. Parameters that were measured include days to 50% flowering (DFL), day to maturity (DM), plant height (PLH), nodule biomass (NB), nodule fresh weight (NFW), nodule dry weight (NDW), grain yield (GY), Biological yield (BY), 100 seed weight (100SW) and drought tolerance stress (DTS). The results indicated a significant variation between genotypes, environments and other morphological, yield and yield components traits. Drought stress reduced significantly the yield and the nodule's characteristics, biological and grain yield. The genotypes with the highest levels of drought tolerance, such as IG70399, IG8256, IG71832, IG70270, and IG70272, showed a minimal decrease in yield and nodule biomass. Nodule observations significantly and positively correlated with GY (0.36-0.38) under drought stress treatment. The correlation values for nodule characteristics with DFL and DM were higher under drought stress compared to irrigated conditions. This is a comparative study between drought stress and nodule formation traits associated with morphological, yield and yield components traits.


Assuntos
Cicer , Secas , Cicer/genética , Estresse Fisiológico/genética , Genótipo , Fenótipo , Grão Comestível
11.
Sci Rep ; 12(1): 16315, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175531

RESUMO

Soil salinity affects various crop cultivation but legumes are the most sensitive to salinity. Osmotic stress is the first stage of salinity stress caused by excess salts in the soil on plants which adversely affects the growth instantly. The Trehalose-6-phosphate synthase (TPS) genes play a key role in the regulation of abiotic stresses resistance from the high expression of different isoform. Selected genotypes were evaluated to estimate for salt tolerance as well as genetic variability at morphological and molecular level. Allelic variations were identified in some of the selected genotypes for the TPS gene. A comprehensive analysis of the TPS gene from selected genotypes was conducted. Presence of significant genetic variability among the genotypes was found for salinity tolerance. This is the first report of allelic variation of TPS gene from chickpea and results indicates that the SNPs present in these conserved regions may contribute largely to functional distinction. The nucleotide sequence analysis suggests that the TPS gene sequences were found to be conserved among the genotypes. Some selected genotypes were evaluated to estimate for salt tolerance as well as for comparative analysis of physiological, molecular and allelic variability for salt responsive gene Trehalose-6-Phosphate Synthase through sequence similarity. Allelic variations were identified in some selected genotypes for the TPS gene. It is found that Pusa362, Pusa1103, and IG5856 are the most salt-tolerant lines and the results indicates that the identified genotypes can be used as a reliable donor for the chickpea improvement programs for salinity tolerance.


Assuntos
Cicer , Cicer/genética , Glucosiltransferases , Tolerância ao Sal/genética , Sais , Solo
12.
Front Genet ; 13: 932430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979429

RESUMO

Domestication is a dynamic and ongoing process of transforming wild species into cultivated species by selecting desirable agricultural plant features to meet human needs such as taste, yield, storage, and cultivation practices. Human plant domestication began in the Fertile Crescent around 12,000 years ago and spread throughout the world, including China, Mesoamerica, the Andes and Near Oceania, Sub-Saharan Africa, and eastern North America. Indus valley civilizations have played a great role in the domestication of grain legumes. Crops, such as pigeon pea, black gram, green gram, lablab bean, moth bean, and horse gram, originated in the Indian subcontinent, and Neolithic archaeological records indicate that these crops were first domesticated by early civilizations in the region. The domestication and evolution of wild ancestors into today's elite cultivars are important contributors to global food supply and agricultural crop improvement. In addition, food legumes contribute to food security by protecting human health and minimize climate change impacts. During the domestication process, legume crop species have undergone a severe genetic diversity loss, and only a very narrow range of variability is retained in the cultivars. Further reduction in genetic diversity occurred during seed dispersal and movement across the continents. In general, only a few traits, such as shattering resistance, seed dormancy loss, stem growth behavior, flowering-maturity period, and yield traits, have prominence in the domestication process across the species. Thus, identification and knowledge of domestication responsive loci were often useful in accelerating new species' domestication. The genes and metabolic pathways responsible for the significant alterations that occurred as an outcome of domestication might aid in the quick domestication of novel crops. Further, recent advances in "omics" sciences, gene-editing technologies, and functional analysis will accelerate the domestication and crop improvement of new crop species without losing much genetic diversity. In this review, we have discussed about the origin, center of diversity, and seed movement of major food legumes, which will be useful in the exploration and utilization of genetic diversity in crop improvement. Further, we have discussed about the major genes/QTLs associated with the domestication syndrome in pulse crops and the future strategies to improve the food legume crops.

13.
Front Genet ; 13: 905771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035111

RESUMO

Legume crops provide significant nutrition to humans as a source of protein, omega-3 fatty acids as well as specific macro and micronutrients. Additionally, legumes improve the cropping environment by replenishing the soil nitrogen content. Chickpeas are the second most significant staple legume food crop worldwide behind dry bean which contains 17%-24% protein, 41%-51% carbohydrate, and other important essential minerals, vitamins, dietary fiber, folate, ß-carotene, anti-oxidants, micronutrients (phosphorus, calcium, magnesium, iron, and zinc) as well as linoleic and oleic unsaturated fatty acids. Despite these advantages, legumes are far behind cereals in terms of genetic improvement mainly due to far less effort, the bottlenecks of the narrow genetic base, and several biotic and abiotic factors in the scenario of changing climatic conditions. Measures are now called for beyond conventional breeding practices to strategically broadening of narrow genetic base utilizing chickpea wild relatives and improvement of cultivars through advanced breeding approaches with a focus on high yield productivity, biotic and abiotic stresses including climate resilience, and enhanced nutritional values. Desirable donors having such multiple traits have been identified using core and mini core collections from the cultivated gene pool and wild relatives of Chickpea. Several methods have been developed to address cross-species fertilization obstacles and to aid in inter-specific hybridization and introgression of the target gene sequences from wild Cicer species. Additionally, recent advances in "Omics" sciences along with high-throughput and precise phenotyping tools have made it easier to identify genes that regulate traits of interest. Next-generation sequencing technologies, whole-genome sequencing, transcriptomics, and differential genes expression profiling along with a plethora of novel techniques like single nucleotide polymorphism exploiting high-density genotyping by sequencing assays, simple sequence repeat markers, diversity array technology platform, and whole-genome re-sequencing technique led to the identification and development of QTLs and high-density trait mapping of the global chickpea germplasm. These altogether have helped in broadening the narrow genetic base of chickpeas.

14.
Front Plant Sci ; 13: 905320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845662

RESUMO

Chickpea is an important source of plant-based protein and mineral elements such as iron (Fe) and zinc (Zn). The development of superior high-yielding germplasm with high nutritional value becomes central for any breeding program. Chickpea biofortified and nutrient-dense seeds can contribute to mitigate many human health problems associated with protein and micronutrients deficiency. In this study, 282 advanced chickpea lines were grown under field conditions to evaluate their agronomic performances and nutritional quality value. The trial was conducted under winter planting conditions during the cropping season 2017/2018 at ICARDA-Marchouch research station, Morocco. Results revealed high genetic variation and significant differences between the tested genotypes for all studied parameters. Under field conditions, the grain yield (GY) varied from 0.57 to 1.81 (t.ha-1), and 100-seed weight (HSW) ranged from 23.1 to 50.9 g. Out of the 282 genotypes, only 4 genotypes (i.e., S130109, S130058, S130066, and S130157) combined both good agronomic performances (GY, HSW) and high nutritional quality (protein, macronutrients, and micronutrients). Protein content ranged from 18.9 to 32.4%. For the whole collection, Fe content varied from 31.2 to 81 ppm, while Zn content ranged from 32.1 to 86.1 ppm. Correlation analysis indicated that the studied traits were significantly intercorrelated, with negative correlation between protein content and Zn concentration. Positive correlations were observed between grain filling time (F2M) and the micronutrients Zn, Cu, and Mn and macroelements K and Mg. Low positive correlation was also recorded between Pr and Fe concentrations. No significant correlation was observed between Fe and Zn. Positive correlations observed between main agronomic and nutritional quality traits makes easy any simultaneous enhancement when combining these traits.

15.
Front Plant Sci ; 13: 762002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548283

RESUMO

Ascochyta blight (AB), caused by the fungal pathogen Ascochyta rabiei, is a devastating foliar disease of chickpea (Cicer arietinum L.). The genotyping-by-sequencing (GBS)-based approach was deployed for mapping QTLs associated with AB resistance in chickpea in two recombinant inbred line populations derived from two crosses (AB3279 derived from ILC 1929 × ILC 3279 and AB482 derived from ILC 1929 × ILC 482) and tested in six different environments. Twenty-one different genomic regions linked to AB resistance were identified in regions CalG02 and CalG04 in both populations AB3279 and AB482. These regions contain 1,118 SNPs significantly associated with AB resistance (p ≤ 0.001), which explained 11.2-39.3% of the phenotypic variation (PVE). Nine of the AB resistance-associated genomic regions were newly detected in this study, while twelve regions were known from previous AB studies. The proposed physical map narrows down AB resistance to consistent genomic regions identified across different environments. Gene ontology (GO) assigned these QTLs to 319 genes, many of which were associated with stress and disease resistance, and with most important genes belonging to resistance gene families such as leucine-rich repeat (LRR) and transcription factor families. Our results indicate that the flowering-associated gene GIGANTEA is a possible key factor in AB resistance in chickpea. The results have identified AB resistance-associated regions on the physical genetic map of chickpea and allowed for the identification of associated markers that will help in breeding of AB-resistant varieties.

17.
Curr Protoc ; 2(2): e371, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35179832

RESUMO

Here we present the approach used to develop the INCREASE "Intelligent Chickpea" Collections, from analysis of the information on the life history and population structure of chickpea germplasm, the availability of genomic and genetic resources, the identification of key phenotypic traits and methodologies to characterize chickpea. We present two phenotypic protocols within H2O20 Project INCREASE to characterize, develop, and maintain chickpea single-seed-descent (SSD) line collections. Such protocols and related genetic resource data from the project will be available for the legume community to apply the standardized approaches to develop Chickpea Intelligent Collections further or for multiplication/seed-increase purposes. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Characterization of chickpea seeds for seed-trait descriptors Basic Protocol 2: Characterization of chickpea lines for plant-trait descriptors specific for primary seed increase.


Assuntos
Cicer , Fabaceae , Cicer/genética , Genômica , Fenótipo , Sementes/genética
18.
Sci Rep ; 12(1): 158, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996977

RESUMO

Weeds represent one of the major constraints for faba bean crop. The identification of molecular markers associated with key genes imparting tolerance to herbicides can facilitate and fasten the efficient and effective development of herbicide tolerant cultivars. We phenotyped 140 faba bean genotypes in three open field experiments at two locations in Lebanon and Morocco against three herbicide treatments (T1 metribuzin 250 g ai/ha; T2 imazethapyr 75 g ai/ha; T3 untreated) and one in greenhouse where T1 and T3 were applied. The same set was genotyped using genotyping by sequencing (GBS) which yield 10,794 high quality single nucleotide polymorphisms (SNPs). ADMIXTURE software was used to infer the population structure which revealed two ancestral subpopulations. To identify SNPs associated with phenological and yield related traits under herbicide treatments, Single-trait (ST) and Multi-trait (MT) Genome Wide Association Studies (GWAS) were fitted using GEMMA software, showing 10 and 14 highly significant associations, respectively. Genomic sequences containing herbicide tolerance associated SNPs were aligned against the NCBI database using BLASTX tool using default parameters to annotate candidate genes underlying the causal variants. SNPs from acidic endochitinase, LRR receptor-like serine/threonine-protein kinase RCH1, probable serine/threonine-protein kinase NAK, malate dehydrogenase, photosystem I core protein PsaA and MYB-related protein P-like were significantly associated with herbicide tolerance traits.


Assuntos
Genes de Plantas , Genoma de Planta , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Ácidos Nicotínicos/farmacologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Triazinas/farmacologia , Vicia faba/efeitos dos fármacos , Vicia faba/genética , Bases de Dados Genéticas , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Locos de Características Quantitativas , Vicia faba/crescimento & desenvolvimento
19.
PLoS One ; 16(12): e0260709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34852014

RESUMO

Soil salinity is significant abiotic stress that severely limits global crop production. Chickpea (Cicer arietinum L.) is an important grain legume that plays a substantial role in nutritional food security, especially in the developing world. This study used a chickpea population collected from the International Center for Agricultural Research in the Dry Area (ICARDA) genebank using the focused identification of germplasm strategy. The germplasm included 186 genotypes with broad Asian and African origins and genotyped with 1856 DArTseq markers. We conducted phenotyping for salinity in the field (Arish, Sinai, Egypt) and greenhouse hydroponic experiments at 100 mM NaCl concentration. Based on the performance in both hydroponic and field experiments, we identified seven genotypes from Azerbaijan and Pakistan (IGs: 70782, 70430, 70764, 117703, 6057, 8447, and 70249) as potential sources for high salinity tolerance. Multi-trait genome-wide association analysis (mtGWAS) detected one locus on chromosome Ca4 at 10618070 bp associated with salinity tolerance under hydroponic and field conditions. In addition, we located another locus specific to the hydroponic system on chromosome Ca2 at 30537619 bp. Gene annotation analysis revealed the location of rs5825813 within the Embryogenesis-associated protein (EMB8-like), while the location of rs5825939 is within the Ribosomal Protein Large P0 (RPLP0). Utilizing such markers in practical breeding programs can effectively improve the adaptability of current chickpea cultivars in saline soil. Moreover, researchers can use our markers to facilitate the incorporation of new genes into commercial cultivars.


Assuntos
Biomarcadores/metabolismo , Cicer/genética , Estudo de Associação Genômica Ampla/métodos , Tolerância ao Sal/genética , África , Povo Asiático , Genoma de Planta , Genótipo , Humanos , Hidroponia , Salinidade , Análise de Sequência de DNA , Cloreto de Sódio , Estresse Fisiológico
20.
Nature ; 599(7886): 622-627, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759320

RESUMO

Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources1. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level2. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively.


Assuntos
Cicer/genética , Variação Genética , Genoma de Planta/genética , Análise de Sequência de DNA , Produtos Agrícolas/genética , Haplótipos/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA